PAMS Technical Documentation NPM–9 Series Transceivers

Troubleshooting Instructions

CONTENTS

Transceiver Troubleshooting	3
Baseband Troubleshooting	3
PWB Test Points	3
Measurement Points	4
Troubleshooting steps	4
Main troubleshooting tree	5
Phone is dead	7
Flash programming doesn't work	8
Phone is jammed	10
Charging fault	12
SIM card is out of order (insert SIM card)	13
Audio fault	14
Display fault	18
Keypad fault	21
RF Troubleshooting	24
Introduction	24
RF Key Components	25
PWB Test Points	26
Transmitter	27
Transmitter troubleshooting diagram	28
Transmitter signals	31
Receiver	33
Receiver troubleshooting diagram for GSM900	34
Receiver troubleshooting diagram for GSM1800	35
LNA gainstep checking GSM900 & GSM1800	36
Synthesizer	37
Synthesizer troubleshooting diagram	38
Synthesizer signals	39
FM Radio troubleshooting	41
FM Radio troubleshooting diagram	42
FM Radio signals	43

Transceiver Troubleshooting

Baseband Troubleshooting

PWB Test Points

BLACK colored test points are connected to the lines between UEM and UPP where the logic level is 1.8 V.

RED colored test points are connected to the lines from FPS–8 and have 2.7 V logic level.

BLUE test points are connected to FM radio lines and have 1.8 V logic level.

Measurement Points

Troubleshooting steps

The following hints help to find the problem if the circuitry seems to be faulty. The instructions are divided into following sections:

- 1. Phone is totally dead
- 2. Flash programming doesn't work
- 3. Power doesn't stay on or the phone is jammed
- 4. Charging fault
- 5. Plug in SIM card is out of order (insert SIM card).
- 6. Audio fault
- 7. Display is not working
- 8. Keypad fault

The first thing to do is carry out a through visual check of the module. Ensure in particular that:

- a) there are not any mechanical damages
- b) soldered joints are OK

Main troubleshooting tree

Phone is dead

Flash programming doesn't work

Phone is jammed

Charging fault

SIM card is out of order (insert SIM card)

Audio fault

Display fault

Keypad fault

RF Troubleshooting

Introduction

Measurements should be done using spectrum analyzer with high–frequency high–impedance passive probe (LO–/reference frequencies and RF power levels) and oscilloscope with a 10:1 probe (DC–voltages and low frequency signals).

The RF–section is build around one RF–ASIC (HAGAR N600). Before changing HAGAR, please check following things: Supply voltages are OK and serial communication coming from baseband to HAGAR.

Please note: Grounding of the PA module is directly below PA module making it difficult to check or change. **Most RF semiconductors are static discharge sensitive!** So ESD protection must be taken care of during repair (ground straps and ESD soldering irons). HAGAR and PA are moisture sensitive and must be pre-baked prior to soldering.

Troubleshooting discrete components (resistors, inductors and capacitors) is done by checking component soldering. Capacitors can be checked for shortening and resistor values using an ohmmeter, but remember in–circuit measurements are evaluated with caution.

Remember that all measured voltages or RF levels in this document are rough figures. Especially RF levels vary due to different measuring equipment or different probe grounding used . When using RF probe it is good to use metallic tweezers to connect probe ground to PWB ground as close to measurement point as possible.

RF Key Components

PWB Test Points

Transmitter

General instructions

Connect test jig to computer with DAU9S cable or to FPS–8 Flash Prommer with XCS–4 modular cable.

Make sure that you have PKD–1 dongle connected to computers parallel port.

Connect DC power supply to module test jig with FLC-2 cable.

NOTE: When repairing or tuning transmitter use external DC supply with at least 3A current capability. Set the DC supply voltage to 3.9V and set the jumper connector on test jig to "bypass" position.

Connect RF–cable to the module test jig (MJS–46) RF connector and to measurement equipment or at least 10dB attenuator, otherwise the PA may be damaged. Normally spectrum analyzer is used as measurement equipment.

NOTE: Normally Spectrum analyzer maximum input power is +30dBm. It is recommended to use 10dB attenuator on Spectrum analyzer input to prevent damage.

Set the phone module to test jig and start Phoenix service sofware.

Initialize connection to phone. (use FBUS driver when using DAU9S and COMBOX driver when using FPS–8)

Select product from the menu: File -> Choose product -> NPM-9

From toolbar set operating mode to "Local".

Activate RF controls window from the menu: Maintenance -> Tuning -> RF Controls

From the RF controls window:

- Select band "GSM900" or "GSM 1800" (Default = "GSM900")
- Set Active unit to "Tx" (Default = "Rx")
- Set Operation mode to "Burst" (Default = "Burst")
- Set Tx data type to "Random" (Default = "All1")
- Set Rx/Tx channel to 37 on GSM900 band or 700 on GSM1800 band (Defaults)
- Set Tx PA mode to "Free" (Default)
- Set power level to 5 (Default = 19) on GSM900 or to 0 (Default = 15) on GSM1800

Transmitter troubleshooting diagram

Transmitter signals

TX_I_0, Tx on, Random data, Burst mode

900/1800 antsw tx contr, Tx on, Burst mode

900/1800 PA ctrl, Tx on, Burst mode, High power level

Tx out signal, 900 band, burst mode, channel 37

Receiver

General instructions

Connect test jig to computer with DAU9S cable or to FPS–8 Flash Prommer with XCS–4 modular cable. Make sure that you have PKD–1 dongle connected to computers parallel port.

Connect DC power supply to module test jig with FLC–2 cable. Set the DC supply voltage to 3.9V and set the jumper connector on test jig to "bypass" position.

Connect RF–cable to the module test jig (MJS–46) RF connector and to RF signal generator.

Set the phone module to test jig and start Phoenix service sofware.

Initialize connection to phone. Use FBUS driver when using DAU9S and COMBOX driver when using FPS–8.

Choose product from the menu: File -> Choose product -> NPM-9.

From toolbar set operating mode to "Local".

Activate RF controls window from the menu: Maintenance -> Testing -> RF Controls.

From the RF controls window:

- Select band "GSM900" or "GSM 1800" (Default = "GSM900")
- Set Active unit to "Rx" (Default = "Rx") Set Operation mode to "Continuous" (Default = "Burst")
- Set AGC to "8: FEG ON + 46 dB (Default = "8: FEG ON + 46 dB")
- Set Rx/Tx channel to 37 on GSM900 band or 700 on GSM1800 band (Defaults)

Apply 942.46771 MHz (channel 37 + 67.710 kHz offset) or 1842.86771 MHz (channel 700 + 67.710 kHz offset) –90 dBm signal to the RF–connector (remember to compensate for cable attenuation).

Measuring with an oscilloscope on "RX_I" or "RX_Q" this picture should be seen on a working GSM900 or GSM1800 receiver:

Signal amplitude is 700 mVpp, DC offset 1.35 V and frequency 67 kHz. If this picture is not seen, continue to the next page.

Receiver troubleshooting diagram for GSM900

Receiver troubleshooting diagram for GSM1800

LNA gainstep checking GSM900 & GSM1800

900 LNA out	1800 LNA out	
 – RF–level at antenna port eg. –50 dBm 	 – RF–level at antenna port eg. –50 dBm 	
– RX continuous mode (local mode)	 – RX continuous mode (local mode) 	
– difference between AGC –settings	 difference between AGC –settings 	
"FEG on" and "FEG off"	"FEG on" and "FEG off"	
roughly 25 dB (using 250 ohm	roughly 30 dB (using 250 ohm passive	
passive RF–probe)	RF–probe)	
LNAB_G	LNAB_P	
– RX continuous mode (local mode)	– RX continuous mode (local mode)	
– 2,6 V DC voltage "FEG ON"	– 2,7 V DC voltage "FEG ON"	
– 0 V DC voltage "FEG OFF"	– 0 V DC voltage "FEG OFF"	
LNA_G	1800 LNA_P	
 – RX continuous mode (local mode) 	 – RX continuous mode (local mode) 	
– 2,7 V DC voltage "FEG ON" and "FEG	- 0 V DC voltage "FEG ON"	
OFF"	– 1.9 V DC voltage "FEG OFF"	

Synthesizer

General instructions

Connect test jig to computer with DAU–9S cable or to FPS–8 Flash Prommer with XCS–4 modular cable.

Make sure that you have PKD–1 dongle connected to computers parallel port.

Connect DC power supply or FPS-8 to module test jig with FLC-2 cable.

Set the DC supply voltage to 3.9V and set the jumper connector on test jig to "bypass" position.

Set the phone module to test jig and start Phoenix service sofware.

Initialize connection to phone. (use FBUS driver when using DAU–9S and COMBOX driver when using FPS–8)

Select product from the menu: File -> Choose product ->NPM-9

From toolbar set operating mode to "Local".

Activate RF controls window from the menu: Maintenance -> Tuning -> RF Controls

From the RF controls window:

- Select band "GSM900" or "GSM 1800" (Default = "GSM900")
- Set Active unit to "Rx" (Default = "Rx")
- Set Operation mode to "Continuous" (Default = "Burst")
- Set Rx/Tx channel to 37 on GSM900 band or 700 on GSM1800 band (Defaults)

Synthesizer troubleshooting diagram

Synthesizer signals

26MHz XO out

13MHz clock

4GHz VCO ctrl 900 RX, channel 124, continuous mode

4GHz VCO ctrl

1800 TX, channel 512, continuous mode

4GHz VCO output, 1800 band, RX on, continuous mode

FM Radio troubleshooting

FM Radio component layout

Components L101, C101 and C102 are not shown in picture. Components are placed in baseband section.

FM Radio troubleshooting diagram

Note 2. Use 10x probe. Compare measured RF signal level to a known good product.

FM Radio signals

Audio out from PWB test point – with FM test signal.

Audio out from test jig connector – with FM test signal, volume 100%.

LC tank 2 – with FM test signal.

IF out 2 – with FM test signal.

This page intentionally left blank.